Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cyprinodon pupfish.
نویسندگان
چکیده
Adaptive radiations are known for rapid morphological and species diversification in response to ecological opportunity, but it remains unclear if distinct mechanisms drive this pattern. Here, we show that rapid rates of morphological diversification are linked to the evolution of novel ecological niches in two independent Cyprinodon radiations nested within a wide-ranging group repeatedly isolated in extreme environments. We constructed a molecular phylogeny for the Cyprinodontidae, measured 16 functional traits across this group, and compared the likelihoods of single or multiple rates of morphological diversification. We found that rates of morphological diversification within two sympatric Cyprinodon clades containing unique trophic specialists are not part of an adaptive continuum with other clades, but are instead extreme outliers with rates up to 131 times faster than other Cyprinodontidae. High rates were not explained by clade age, but were instead linked to unique trophic niches within Cyprinodon, including scale-eating, zooplanktivory, and piscivory. Furthermore, although both radiations occur in similar environments and have similar sister species, they each evolved unique trophic specialists and high rates of morphological diversification in different sets of traits. We propose that the invasion of novel ecological niches may be a key mechanism driving many classic examples of adaptive radiation.
منابع مشابه
On the Measurement of Ecological Novelty: Scale-Eating Pupfish Are Separated by 168 my from Other Scale-Eating Fishes
The colonization of new adaptive zones is widely recognized as one of the hallmarks of adaptive radiation. However, the adoption of novel resources during this process is rarely distinguished from phenotypic change because morphology is a common proxy for ecology. How can we quantify ecological novelty independent of phenotype? Our study is split into two parts: we first document a remarkable e...
متن کاملThe genetic architecture of novel trophic specialists: larger effect sizes are associated with exceptional oral jaw diversification in a pupfish adaptive radiation.
The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morph...
متن کاملNovel trophic niches drive variable progress towards ecological speciation within an adaptive radiation of pupfishes.
Adaptive radiation is recognized by a rapid burst of phenotypic, ecological and species diversification. However, it is unknown whether different species within an adaptive radiation evolve reproductive isolation at different rates. We compared patterns of genetic differentiation between nascent species within an adaptive radiation of Cyprinodon pupfishes using genotyping by sequencing. Similar...
متن کاملAdaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes
Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated ...
متن کاملThe cryptic origins of evolutionary novelty: 1000-fold faster trophic diversification rates without increased ecological opportunity or hybrid swarm.
Ecological opportunity is frequently proposed as the sole ingredient for adaptive radiation into novel niches. An additional trigger may be genome-wide hybridization resulting from "hybrid swarm." However, these hypotheses have been difficult to test due to the rarity of comparable control environments lacking adaptive radiations. Here I exploit such a pattern in microendemic radiations of Cari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 65 8 شماره
صفحات -
تاریخ انتشار 2011